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Abstract. A generalized inverse problem for a two-dimensional difference operator is introduced.
A new construction of the algebro-geometric difference operators of two types first considered by
Krichever and by Novikov is proposed.

1. Introduction

The notion of a finite-gap with respect to a one energy level Schrödinger operator was
introduced by Dubrovin et al in [1]. Novikov and Veselov [2] dealt with a class of two-
dimensional Schrödinger operators called potential operators and solved the inverse scattering
problem. Krichever [3] introduced a similar theory for difference operators. Recent work [4–6]
has dealt with different natural generalizations of two-dimensional difference operators defined
on regular graphs and lattices. In particular, in [4] (see also appendix I in [5]) in the context of
discrete Laplace transformations Novikov introduced an important class of difference operators
on a equilateral triangular lattice. These papers stimulated new research in this area (see the
review in [6]).

In this paper we propose a generalized inverse problem and a new construction of two-
dimensional algebro-geometric operators in Krichever’s and Novikov’s classes of operators.

Let L be a two-dimensional difference operator (of order 2K)

(Lψ)nm =
∑

i,j,|i|�K,|j |�K
aijnmψn+i,m+j (1)

with periodic coefficients

a
ij

n+N,m = a
ij

n,m+M = aijnm.

Consider a space of Floquet functions

ψn+N,m = w1ψn,m ψn,m+M = w2ψn,m.

This space is finite-dimensional and the operator L induces in this space a linear operator
L(w1, w2). The characteristic equation of this operator

Q(w1, w2, E) = det(E · Id − L(w1, w2)) = 0

defines a two-dimensional algebraic variety M2. A point M2 corresponds to a unique
eigenvector ψnm of the operator L

(Lψ)nm = Eψnm
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9256 A A Oblomkov and A V Penskoi

such that ψ00 = 1. All other components ψnm are meromorphic functions on M2. Consider a
curve � ⊂ M2 corresponding to the ‘zero-energy level’

� = {w1, w2|Q(w1, w2, 0) = 0}.
The functions ψnm are meromorphic on �.

We can consider the two following problems.

(1) The direct spectral problem. Find explicitly the ‘spectral data’ of the operator L (i.e. a
set of geometric data like a curve �, divisors of poles of ψnm etc) which determines the
operator L uniquely.

(2) The inverse spectral problem. Find explicitly the operator L using the ‘spectral data’.

Both problems are complicated. It is nearly impossible to solve either of them in a general
case. We can, however, consider a generalized inverse problem which consists of finding a set
of geometric data with the following properties:

(1) The set of geometric data uniquely defines a family of functions ψnm defined on an
algebraic complex curve �.

(2) These functions satisfy the equation Lψ = 0 for some operator L of the form (1).
(3) The operator L is uniquely defined by the equation Lψ = 0 and the coefficients aijnm can

be found explicitly.

This problem is solved for some particular operators in the paper [3]. Krichever calls such
operators ‘integrable’ but we will use the term ‘algebro-geometric’.

Our goal is to find algebro-geometric operators. We found two examples which can be of
interest.

The first example is provided by operators of the form

(Lψ)nm = anmψn−1,m + bnmψn+1,m + cnmψn,m−1 + dnmψn,m+1 + vnmψnm. (2)

A value of (Lψ)nm depends only on values of ψ at the points

(n− 1,m) (n + 1,m) (n,m− 1) (n,m + 1) (n,m)

which form a cross in the plane (n,m). We will call such an operator ‘cross-shaped’. These
operators were considered by Krichever in [3]. Algebro-geometric operators of the form (2)
found by Krichever correspond to a curve �′ ⊂ M2 whose image under projection on the
E-plane is the whole E-plane. The corresponding problem is Lψ = Eψ , where both E
and ψ are functions defined on �′. In this paper we deal with a different type of algebro-
geometric operators of the form (2) which corresponds to the ‘zero-energy level’ curve. The
corresponding problem is Lψ = 0.

The other example is more complicated and perhaps more interesting. Consider a
triangular lattice in a plane. We will use as coordinates triples of integers k, l,m such that
k + l +m = 0. On such a lattice we can consider an operator of the form

(Lψ)klm = aklmψk,l+1,m−1 + bklmψk,l−1,m+1 + cklmψk+1,l−1,m

+dklmψk−1,l+1,m + fklmψk+1,l,m−1 + gklmψk−1,l,m+1. (3)

A value of (Lψ)klm depends only on values of ψ at the points

(k, l + 1,m− 1) (k, l − 1,m + 1) (k + 1, l − 1,m)

(k − 1, l + 1,m) (k + 1, l, m− 1) (k − 1, l, m + 1)

which form a hexagon in the plane k, l,m. We will call such an operator ‘hexagonal’. In
this case our lattice is not rectangular, nevertheless we can consider the generalized inverse
problem and solve it.
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As we have already mentioned, this class of operators has been introduced by Novikov [4–
6] in the context of the discrete Laplace transformation.

It should be noted that our formulae in sections 3 and 4 are not unique. We can choose
other singularity structures for the ψ-function (for example rotating the plane (n,m) by π

2 in
the case of operators of the form (2)) and obtain other algebro-geometric operators.

2. Notation and conventions

We use the notations and conventions of [7]. In particular, our conventions are as follows. A
basis of cycles a1, . . . , ag , b1, . . . , bg is chosen in such a way that

ai ◦ aj = bi ◦ bj = 0 ai ◦ bj = δij i, j = 1, . . . , g

where g is the genus of a non-singular curve�. A basis of holomorphic differentialsω1, . . . , ωg
is chosen in such a way that∮

aj

ωk = 2π iδjk j, k = 1, . . . , g.

We define the Jacobian J (�) as C
g/{2π iM + BN}, where M,N ∈ Z

g , B is a matrix of
b-periods of ωi

Bjk =
∮
bj

ωk j, k = 1, . . . , g.

We denote by !PQ the Abel differential of the third kind, i.e. a differential with unique poles
at the points P and Q and residues +1 and −1 at these points respectively, we denote by UPQ
the vector of the b-periods of !PQ and by K the vector of the Riemann constants.

We define the $-function as

$(z) =
∑
N∈Zg

exp( 1
2 〈BN,N〉 + 〈N, z〉)

where z = (z1, . . . , zg) ∈ C
g and 〈 , 〉 is a Euclidean scalar product 〈x, y〉 = ∑g

i=1 xiyj .
We use the following natural convention: if n is a negative integer then a zero (pole) of

the nth order is a pole (zero) of the |n|th order.

3. The cross-shaped operators: Krichever’s class

Consider an arbitrary two-dimensional difference operator L of the form (2). Our goal is to
find a solution of the generalized inverse problem stated in the introduction.

Our construction is as follows. Let � be a non-singular curve of genus g. Let
P±
i , i = 1, 2, 3, be six points on �. Let D be a generic divisor of the form D = P1 + · · · + Pg

such that the points Pk are different from the P±
i . Consider a function φαβγ , α, β, γ ∈ Z,

defined on � such that:

(1) If a point P ∈ � \ {P±
1 , P

±
2 , P

±
3 } is a pole of φαβγ , then P is one of the points Pk;

(2) The function φαβγ has a zero of αth order in P +
1 and a pole of αth order in P−

1 , the same
structure for β and P±

2 , γ and P±
3 .

Lemma.

(1) Such a function φαβγ exists and is unique up to multiplication by a constant.
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(2) The explicit formula for φαβγ is

rαβγ · exp
∫ P

P0

(α!1 + β!2 + γ!3) · $(A(P ) + αU1 + βU2 + γU3 − A(D)− K)
$(A(P )− A(D)− K)

where rαβγ is an arbitrary constant, P0 is a fixed point defining the Abel transform A (it

should be remarked that the paths of integration in
∫ P
P0

and in the Abel transform are the
same), !i = !P +

i P
−
i

, Ui = UP +
i P

−
i

.

Proof. The proof is performed by standard reasoning of the theory of the algebro-geometric
integration. �

The key idea behind the construction of our functionsψnm is a convenient relabelling with
ψnm = φαβγ , where

α(n,m) = 2 − n−m

2
β(n,m) = n−m

2
if n +m = 0 (mod 2)

γ (n,m) = n−m

2

α(n,m) = 3 − n−m

2
β(n,m) = −1 + n−m

2
if n +m = 1 (mod 2).

γ (n,m) = 1 + n−m

2
We will use vectorial notation for the triples, i.e. the representation of a triple α, β, γ as a

vector αi + βj + γk. For example, we will sometimes write φαi+βj+γk instead of φα,β,γ . This
is useful because, for example, if v = αi+βj +γk, then we can write φv+i instead of φα+1,β,γ .

We write ψnm = φv(n,m), where v(n,m) = α(n,m)i + β(n,m)j + γ (n,m)k, i.e.

v(n,m) = 2 − n−m

2
i +

n−m

2
j +

n−m

2
k if n +m = 0 (mod 2)

v(n,m) = 3 − n−m

2
i +

−1 + n−m

2
j +

1 + n−m

2
k if n +m = 1 (mod 2).

We will also use the following notation:

$(P, αi + βj + γk) = $(P, α, β, γ ) = $(A(P ) + αU1 + βU2 + γU3 − A(D)− K).
Let us formulate our theorem.

Theorem 1. Let a family ψmn be defined as stated above. Then Lψ = 0 if and only if the
coefficients anm, bnm, cnm, dnm, vnm of the operator L are defined up to multiplication by a
constant by the following formulae:

(1) if n +m ≡ 0 (mod 2), then

anm

dnm
= − rv−j

rv+i−j

· $(P +
2 , v − j)

$(P +
2 , v + i − j)

· exp

(
−

∫ P +
2

P0

!1

)

bnm

dnm
= − rv−j

rv+k

· $(P
+
2 , v − j)$(P−

1 , v + i − j)$(P−
3 , v + i + k)

$(P +
2 , v + i − j)$(P−

1 , v + i + k)$(P−
3 , v + k)

× exp

( ∫ P−
3

P0

!1 −
∫ P +

2

P0

!1 −
∫ P−

1

P0

(!2 +!3)

)

cnm

dnm
= rv−j

rv+i+k

· $(P +
2 , v − j)$(P−

1 , v + i − j)

$(P +
2 , v + i − j)$(P−

1 , v + i + k)
· exp

(
−

∫ P +
2

P0

!1 −
∫ P−

1

P0

(!2 +!3)

)
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vnm

dnm
= rv−j

rv
· $(P +

2 , v − j)$(P−
1 , v + i − j)

$(P +
2 , v + i − j)$(P−

1 , v + i + k)

× exp

(
−

∫ P +
2

P0

!1 −
∫ P−

1

P0

(!2 +!3) +
∫ P−

2

P0

!3

)

×
[
$(P−

3 , v + i + k)$(P−
2 , v + k)

$(P−
3 , v + k)$(P−

2 , v)
· exp

( ∫ P−
3

P0

!1

)

−$(P
−
2 , v + i + k)

$(P−
2 , v)

· exp

( ∫ P−
2

P0

!1

)]

where v = v(n,m),
(2) if n +m ≡ 1 (mod 2), then

anm

cnm
= − rv+j

rv−k

· $(P
−
2 , v + j)$(P +

1 , v − i + j)$(P +
3 , v − i − k)

$(P−
2 , v − i + j)$(P +

1 , v − i − k)$(P +
3 , v − k)

× exp

( ∫ P−
2

P0

!1 +
∫ P +

1

P0

(!2 +!3)−
∫ P +

3

P0

!1

)

bnm

cnm
= − rv+j

rv−i+j

· $(P−
2 , v + j)

$(P−
2 , v − i + j)

· exp

( ∫ P−
2

P0

!1

)

dnm

cnm
= rv+j

rv−i−k

· $(P−
2 , v + j)$(P +

1 , v − i + j)

$(P−
2 , v − i + j)$(P +

1 , v − i − k)
· exp

( ∫ P−
2

P0

!1 +
∫ P +

1

P0

(!2 +!3)

)

vnm

cnm
= rv+j

rv
· $(P−

2 , v + j)$(P +
1 , v − i + j)

$(P−
2 , v − i + j)$(P +

1 , v − i − k)

× exp

( ∫ P−
2

P0

!1 +
∫ P +

1

P0

(!2 +!3)−
∫ P2+

P0

!3

)

×
[
$(P +

3 , v − i − k)$(P +
2 , v − k)

$(P +
3 , v − k)$(P +

2 , v)
· exp

(
−

∫ P +
3

P0

!1

)

−$(P
+
2 , v − i − k)

$(P +
2 , v)

· exp

(
−

∫ P +
2

P0

!1

)]

where v = v(n,m).

Proof. Let Lψ = 0. Let us consider the case n +m ≡ 0 (mod 2). Thus, the formula Lψ = 0
becomes

anmφv+i−j + bnmφv+k + cnmφv+i+k + dnmφv−j + vnmφv = 0. (4)

Consider the point P−
1 . Let λ be a local parameter in a neighbourhood of P−

1 . Hence
φαβγ = λ−α · h, where h is a holomorphic function. The function exp

∫ P
P0
!1 has a pole

of first order at the point P−
1 . Thus exp

∫ P
P0
!1 = K−

1 λ
−1 + · · · , where K−

1 is a constant.
Therefore we have

φαβγ (P ) = rαβγ (K
−
1 )

α

(
exp

∫ P−
1

P0

!2

)β(
exp

∫ P−
1

P0

!3

)γ
$(P−

1 , α, β, γ )

$(P−
1 , 0, 0, 0)

λ−α + · · ·

for P in the neighbourhood of P−
1 .



9260 A A Oblomkov and A V Penskoi

Now we can write down the term with λ−(α(n,m)+1) in formula (4) in the neighbourhood of
P−

1 :

anm(K
−
1 )

α(n,m)+1rv+i−j

(
exp

∫ P−
1

P0

!2

)β(n,m)−1(
exp

∫ P−
1

P0

!3

)γ (n,m)

×$(P
−
1 , v + i − j)

$(P−
1 , 0, 0, 0)

λ−(α(n,m)+1)

+cnm(K
−
1 )

α(n,m)+1rv+i+k

(
exp

∫ P−
1

P0

!2

)β(n,m)(
exp

∫ P−
1

P0

!3

)γ (n,m)+1

×$(P
−
1 , v + i + k)

$(P−
1 , 0, 0, 0)

λ−(α(n,m)+1) = 0.

After simplification we obtain a linear equation for anm and cnm:

anmrv+i−j$(P
−
1 , v + i − j) + cnmrv+i+k exp

( ∫ P−
1

P0

(!2 +!3)

)
$(P−

1 , v + i + k) = 0.

By carrying out analogous computations at the points P−
3 , P−

2 and P +
2 we obtain three other

linear equations for anm, bnm, cnm, dnm and vnm. These equations can be explicitly solved and
the formulae for the coefficients of the operator L given in the statement of the theorem are
obtained. The case n +m ≡ 1 (mod 2) is analogous.

Now let us suppose that anm, . . . , vnm are given by the formulae in the theorem statement.
Let us prove that Lψ = 0. Consider the case n +m ≡ 0 (mod 2). Let us consider a function

(L̂ψ)nm = anm

dnm
ψn−1,m +

bnm

dnm
ψn+1,m +

cnm

dnm
ψn,m−1 +

vnm

dnm
ψn,m.

This function has the same pole or zero structure as the function −ψn,m+1 at the points P +
i , i =

1, 2, 3. It follows from the formulae in the theorem statement that (L̂ψ)nm and −ψn,m+1 have
the same pole or zero structure at P−

i , i = 1, 2, 3. If a point P ∈ � \{P±
1 , P

±
2 , P

±
3 } is a pole of

(L̂ψ)nm or −ψn,m+1, then P ∈ D. Thus, by the lemma, (L̂ψ)nm and −ψn,m+1 are proportional.
Moreover, from the formulae for the coefficients of the operator L it follows that the terms
with λβ(n,m)−1 in the series expansions of these two functions at the point P +

2 are the same.
Hence (L̂ψ)nm = −ψn,m+1, but this is equivalent to Lψ = 0. The case n +m ≡ 1 (mod 2) is
analogous. This completes the proof. �

Any set of non-zero constants gnm defines a ‘gauge’ transformation of operators of the
form (2) such that

a′
nm = g−1

n−1,manm b′
nm = g−1

n+1,mbnm c′
nm = g−1

n,m−1cnm

d ′
nm = g−1

n,m+1dnm v′
nm = g−1

nmvnm.

This gauge transform acts on the eigenfunctions in the following manner: ψ ′
nm = gnmψnm.

The following theorem is an easy corollary of theorem 1.

Theorem 1′. For any set of ‘spectral data’ consisting of: a non-singular curve � of genus
g; six points P±

i ∈ �, i = 1, 2, 3; and a generic divisor D of g points different from the P±
i ,

there exists, up to a gauge transformation, a unique operator L of the form (2).
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4. The hexagonal operators: Novikov’s class

Consider a triangular lattice in a plane. We will use as coordinates triples of integers k, l,m
such that k + l +m = 0.

Consider an arbitrary two-dimensional difference operator L of the form (3). Our goal is
to find some solution of the generalized inverse problem stated in the introduction.

Our construction is as follows. Let � be a non-singular curve of genus g. Let Qi , Ri ,
i = 1, 2, 3, be six points on �. Let D be a generic divisor of the form D = P1 + · · · + Pg such
that the points Pk are different from the Qi , Ri . Consider a function φαβγρστ , α, β, γ , ρ, σ ,
τ ∈ Z, α + β + γ = 0, ρ + σ + τ = 0, defined on � such that:

(1) If a point P ∈ � \ {Q1,Q2,Q3, R1, R2, R3} is a pole of φαβγρστ , then P is one of the
points Pk .

(2) The function φαβγρστ has a pole of αth order in Q1, a pole of βth order in Q2, a pole of
γ th order in Q3; the same structure for ρ, σ , τ and R1, R2, R3.

Lemma.

(1) Such a function φαβγρστ exists and is unique up to multiplication by a constant.
(2) The explicit formula for φαβγρστ is

rαβγρστ · exp
∫ P

P0

(α!Q3Q1 + β!Q3Q2 + ρ!R3R1 + σ!R3R2)

×$(A(P ) + αUQ3Q1 + βUQ3Q2 + ρUR3R1 + σUR3R2 − A(D)− K)
$(A(P )− A(D)− K)

where rαβγρστ is an arbitrary constant, P0 is a fixed point defining the Abel transform A

(it should be noted that the paths of integration in
∫ P
P0

and in the Abel transform are the
same).

Proof. The proof is performed by standard reasoning of the theory of the algebro-geometric
integration. �

As in section 3 we will use vectorial notation. We will represent the six integer numbers
α, β, γ , ρ, σ , τ as one vector

v = αe1 + βe2 + γ e3 + ρe4 + σe5 + τe6 ∈ Z
6.

Thus, we will write φv instead of φαβγρστ .
The key idea of the construction of our functions ψklm is a convenient relabelling with

ψklm = φv(k,l,m), where

v(k, l, m) = k − l

3
e1 +

l −m

3
e2 +

m− k

3
e3 +

k − l

3
e4

+
l −m

3
e5 +

m− k

3
e6 if k − l = 0 (mod 3)

v(k, l, m) = k − l − 1

3
e1 +

l −m + 2

3
e2 +

m− k − 1

3
e3 +

k − l + 2

3
e4

+
l −m− 1

3
e5 +

m− k − 1

3
e6 if k − l = 1 (mod 3)

v(k, l, m) = k − l + 1

3
e1 +

l −m + 1

3
e2 +

m− k − 2

3
e3 +

k − l + 1

3
e4

+
l −m− 2

3
e5 +

m− k + 1

3
e6 if k − l = 2 (mod 3).
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We will also use the following notation:

$(P, αe1 + βe2 + γ e3 + ρe4 + σe5 + τe6) = $(P, α, β, γ, ρ, σ, τ )

= $(A(P ) + αUQ3Q1 + βUQ3Q2 + ρUR3R1 + σUR3R2 − A(D)− K).
Let us formulate our theorem.

Theorem 2. Let a family ψklm be defined as stated above. Then Lψ = 0 if and only if the
coefficients aklm, bklm, cklm, dklm, fklm, gklm, of the operatorL are defined up to a multiplication
by a constant by the following formulae:

(1) if k − l ≡ 0 (mod 3), then

aklm

bklm
= rv+e4−e5

rv+e2−e3

·
[
$(Q2, v − e1 + e2)$(Q3, v + e4 − e5)

$(Q2, v + e2 − e3)$(Q3, v − e1 + e2)

× exp

( ∫ Q3

P0

(!R2R1 −!Q1Q2)−
∫ Q2

P0

!Q3Q1

)

+
$(Q2, v + e2 − e3 + e4 − e6)$(R1, v + e4 − e5)

$(Q2, v + e2 − e3)$(R1, v + e2 − e3 + e4 − e6)

× exp

( ∫ Q2

P0

!R3R1 −
∫ R1

P0

(!Q3Q2 +!R3R2)

)]

dklm

bklm
= − rv+e4−e5

rv−e1+e2

· $(Q3, v + e4 − e5)

$(Q3, v − e1 + e2)
· exp

( ∫ Q3

P0

(!R2R1 −!Q1Q2)

)

fklm

bklm
= − rv+e4−e5

rv+e2−e3+e4−e6

· $(R1, v + e4 − e5)

$(Q3, v + e2 − e3 + e4 − e6)

× exp

( ∫ R1

P0

(−!Q3Q2 −!R3R2)

)

cklm

bklm
= 0

gklm

bklm
= 0 where v = v(k, l, m).

(2) if k − l ≡ 1 (mod 3), then

bklm

dklm
= − rv−e4+e6

rv+e1−e2−e5+e6

· $(R3, v − e4 + e6)

$(R3, v + e1 − e2 − e5 + e6)

× exp

( ∫ R3

P0

(!Q1Q2 +!R1R2)

)

cklm

dklm
= rv−e4+e6

rv+e1−e2

·
[
$(R1, v + e1 − e2 − e5 + e6)$(R3, v − e4 + e6)

$(R1, v + e1 − e2)$(R3, v + e1 − e2 − e5 + e6)

× exp

( ∫ R3

P0

(!Q1Q2 +!R1R2)−
∫ R1

P0

!R3R2

)

+
$(R1, v + e1 − e3)$(Q2, v − e4 + e6)

$(R1, v + e1 − e2)$(Q2, v + e1 − e3)

× exp

( ∫ R1

P0

!Q3Q2 −
∫ Q2

P0

(!Q3Q1 +!R3R1)

)]

fklm

dklm
= − rv−e4+e6

rv+e1−e3

· $(Q2, v − e4 + e6)

$(Q2, v + e1 − e3)
· exp

( ∫ Q2

P0

(−!Q3Q1 −!R3R1)

)

aklm

dklm
= 0

gklm

dklm
= 0 where v = v(k, l, m).
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(3) if k − l ≡ 2 (mod 3), then

bklm

fklm
= − rv+e5−e6

rv−e2+e3

· $(Q1, v + e5 − e6)

$(Q1, v − e2 + e3)
· exp

( ∫ Q1

P0

(!Q3Q2 +!R3R2)

)

dklm

fklm
= − rv+e5−e6

rv−e1+e3−e4+e5

· $(R2, v + e5 − e6)

$(R2, v − e1 + e3 − e4 + e5)

× exp

( ∫ R2

P0

(!Q3Q1 +!R3R1)

)

gklm

fklm
= rv+e5−e6

rv−e1+e3

·
[
$(Q3, v − e2 + e3)$(Q1, v + e5 − e6)

$(Q3, v − e1 + e3)$(Q1, v − e2 + e3)

× exp

( ∫ Q1

P0

(!Q3Q2 +!R3R2)−
∫ Q3

P0

!Q1Q2

)

+
$(Q3, v − e1 + e3 − e4 + e5)$(R2, v + e5 − e6)

$(Q3, v − e1 + e3)$(R2, v − e1 + e3 − e4 + e5)

× exp

( ∫ R2

P0

(!Q3Q1 +!R3R1) +
∫ Q3

P0

!R1R2

)]

aklm

fklm
= 0

cklm

fklm
= 0 where v = v(k, l, m).

Proof. The proof is analogous to the proof of theorem 1. �

Any set of non-zero constants hklm defines a ‘gauge’ transformation of operators of the
form (3) such that

a′
klm = h−1

k,l+1,m−1aklm b′
klm = h−1

k,l−1,m+1bklm c′
klm = h−1

k+1,l−1,mcklm

d ′
klm = h−1

k−1,l+1,mdklm f ′
klm = h−1

k+1,l,m−1fklm g′
klm = h−1

k−1,l,m+1gklm.

This gauge transform acts on the eigenfunctions in the following manner: ψ ′
klm = hklmψklm.

The following theorem is an easy corollary of theorem 2.

Theorem 2′. For any set of ‘spectral data’ consisting of: a non-singular curve � of genus
g, six points Qi,Ri ∈ �, i = 1, 2, 3, and a generic divisor D of g points different from the
Qi,Ri , there exists, up to a gauge transformation, a unique operator L of the form (3).
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